A backbone-centred energy function of neural networks for protein design

  • 1.

    Li, H., Helling, R., Tang, C. & Wingreen, N. Emergence of preferred structures in a simple model of protein folding. Science 273666–669 (1996).

    ADS CAS Article Google Scholar

  • 2.

    England, JL & Shakhnovich, EI Structural determinant of protein designability. Phys. Rev. Lett. 90218101 (2003).

    ADS Article Google Scholar

  • 3.

    Hoang, TX, Trovato, A., Seno, F., Banavar, JR & Maritan, A. Geometry and symmetry presculpt the free-energy landscape of proteins. Proc. Natl Acad. Sci. USA 1017960–7964 (2004).

    ADS CAS Article Google Scholar

  • 4.

    Rose, GD, Fleming, PJ, Banavar, JR & Maritan, A. A backbone-based theory of protein folding. Proc. Natl Acad. Sci. USA 10316623–16633 (2006).

    ADS CAS Article Google Scholar

  • 5.

    Skolnick, J. & Gao, M. The role of local versus nonlocal physicochemical restraints in determining protein native structure. Curr. Open. Struct. Biol. 681–8 (2021).

    CAS Article Google Scholar

  • 6.

    Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 3021364–1368 (2003).

    ADS CAS Article Google Scholar

  • 7.

    Jiang, L. et al. De novo computational design of retro-aldol enzymes. Science 3191387–1391 (2008).

    ADS CAS Article Google Scholar

  • 8.

    Koga, N. et al. Principles for designing ideal protein structures. Nature 491222–227 (2012).

    ADS CAS Article Google Scholar

  • 9.

    Marcos, E. et al. Principles for designing proteins with cavities formed by curved β sheets. Science 355201–206 (2017).

    ADS CAS Article Google Scholar

  • 10.

    Dou, J. et al. De novo design of a fluorescence-activating β-barrel. Nature 561485–491 (2018).

    ADS CAS Article Google Scholar

  • 11.

    Lu, P. et al. Accurate computational design of multipass transmembrane proteins. Science 3591042–1046 (2018).

    ADS CAS Article Google Scholar

  • 12.

    Glasgow, AA et al. Computational design of a modular protein sense–response system. Science 3661024–1028 (2019).

    ADS CAS Article Google Scholar

  • 13.

    Huang, PS, Boyken, SE & Baker, D. The coming of age of de novo protein design. Nature 537320–327 (2016).

    ADS CAS Article Google Scholar

  • 14.

    Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 133031–3048 (2017).

    CAS Article Google Scholar

  • 15.

    Grigoryan, G. & DeGrado, WF Probing designability via a generalized model of helical bundle geometry. J. Mol. Biol. 4051079–1100 (2011).

    CAS Article Google Scholar

  • 16.

    Thomson, AR et al. Computational design of water-soluble α-helical barrels. Science 346485–488 (2014).

    ADS CAS Article Google Scholar

  • 17.

    Brunette, TJ et al. Exploring the repeat protein universe through computational protein design. Nature 528580–584 (2015).

    ADS CAS Article Google Scholar

  • 18.

    Jacobs, T. et al. Design of structurally distinct proteins using strategies inspired by evolution. Science 352687–690 (2016).

    ADS CAS Article Google Scholar

  • 19.

    Pan, X. et al. Expanding the space of protein geometries by computational design of de novo fold families. Science 3691132–1136 (2020).

    ADS CAS Article Google Scholar

  • 20.

    Baker, D. An exciting but challenging road ahead for computational enzyme design. Protein Sci. 191817–1819 (2010).

    CAS Article Google Scholar

  • 21.

    Otten, R. et al. How directed evolution reshapes the energy landscape in an enzyme to boost catalysis. Science 3701442–1446 (2020).

    ADS CAS Article Google Scholar

  • 22.

    Zhang, Y., Hubner, IA, Arakaki, AK, Shakhnovich, E. & Skolnick, J. On the origin and highly likely completeness of single-domain protein structures. Proc. Natl Acad. Sci. USA 1032605–2610 (2006).

    ADS CAS Article Google Scholar

  • 23.

    Kukic, P. et al. Mapping the protein fold universe using the CamTube force field in molecular dynamics simulations. PLoS Comput. Biol. 11e1004435 (2015).

    Article Google Scholar

  • 24.

    MacDonald, JT, Maksimiak, K., Sadowski, MI & Taylor, WR De novo backbone scaffolds for protein design. Proteins Struct. Funct. Bioinf. 781311–1325 (2010).

    CAS Article Google Scholar

  • 25.

    MacDonald, JT et al. Synthetic β-solenoid proteins with the fragment-free computational design of a β-hairpin extension. Proc. Natl Acad. Sci. USA 11310346–10351 (2016).

    CAS Article Google Scholar

  • 26.

    Van Gunsteren, WF, Berendsen, HJC & Rullmann, JAC Stochastic dynamics for molecules with constraints: Brownian dynamics of n-alkanes. Mol. Phys. 4469–95 (1981).

    ADS Article Google Scholar

  • 27.

    Xiong, P. et al. Protein design with a comprehensive statistical energy function and boosted by experimental selection for foldability. Nat. Commun. 55330 (2014).

    ADS CAS Article Google Scholar

  • 28.

    Xiong, P. et al. Increasing the efficiency and accuracy of the ABACUS protein sequence design method. Bioinformatics 36136–144 (2020).

    CAS Article Google Scholar

  • 29.

    Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98146401 (2007).

    ADS Article Google Scholar

  • 30.

    Wang, G. & Dunbrack, RL, Jr. PISCES: recent improvements to a PDB sequence culling server. Nucleic Acids Res. 33W94–W98 (2005).

    CAS Article Google Scholar

  • 31.

    Berman, HM et al. The Protein Data Bank. Nucleic Acids Res. 28235–242 (2000).

    ADS CAS Article Google Scholar

  • 32.

    Taylor, WR A ‘pperiodic table’ for protein structures. Nature 416657–662 (2002).

    ADS CAS Article Google Scholar

  • 33.

    Baker, D. What has de novo protein design taught us about protein folding and biophysics? Protein Sci. 28678–683 (2019).

    CAS Article Google Scholar

  • 34.

    Liu, R., Wang, J., Xiong, P., Chen, Q. & Liu, H. De novo sequence redesign of a functional Ras-binding domain globally inverted the surface charge distribution and led to extreme thermostability. Biotechnol. Bioeng. 1182031–2042 (2021).

    CAS Article Google Scholar

  • Leave a Comment

    Your email address will not be published.